Functional connectivity between anatomically unconnected areas is shaped by collective network-level effects in the macaque cortex.

نویسندگان

  • Yusuke Adachi
  • Takahiro Osada
  • Olaf Sporns
  • Takamitsu Watanabe
  • Teppei Matsui
  • Kentaro Miyamoto
  • Yasushi Miyashita
چکیده

Coherent spontaneous blood oxygen level-dependent (BOLD) fluctuations have been intensely investigated as a measure of functional connectivity (FC) in the primate neocortex. BOLD-FC is commonly assumed to be constrained by the underlying anatomical connectivity (AC); however, cortical area pairs with no direct AC can also have strong BOLD-FC. On the mechanism generating FC in the absence of direct AC, there are 2 possibilities: 1) FC is determined by signal flows via short connection patterns, such as serial relays and common afferents mediated by a third area; 2) FC is shaped by collective effects governed by network properties of the cortex. In this study, we conducted functional magnetic resonance imaging in anesthetized macaque monkeys and found that BOLD-FC between unconnected areas depends less on serial relays through a third area than on common afferents and, unexpectedly, common efferents, which does not match the first possibility. By utilizing a computational model for interareal BOLD-FC network, we show that the empirically detected AC-FC relationships reflect the configuration of network building blocks (motifs) in the cortical anatomical network, which supports the second possibility. Our findings indicate that FC is not determined solely by interareal short connection patterns but instead is substantially influenced by the network-level cortical architecture.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Direct comparison of spontaneous functional connectivity and effective connectivity measured by intracortical microstimulation: an fMRI study in macaque monkeys.

Correlated spontaneous activity in the resting brain is increasingly recognized as a useful index for inferring underlying functional-anatomic architecture. However, despite efforts for comparison with anatomical connectivity, neuronal origin of intrinsic functional connectivity (inFC) remains unclear. Conceptually, the source of inFC could be decomposed into causal components that reflect the ...

متن کامل

Correlation Analysis of the Tinnitus Handicap Inventory ‎and Distress Network in Chronic Tinnitus: An EEG Study

Aim: Tinnitus is a common disorder with a considerable amount of distress that affects the patient`s daily life. No objective tools were approved for measuring tinnitus distress. It can be estimated only by subjective scales and questionnaires, albeit, the Electroencephalography (EEG) studies have reported some alterations regarding tinnitus distress network. This study aimed to investigate the...

متن کامل

Functional MRI neurofeedback training on connectivity between two regions induces long-lasting changes in intrinsic functional network

Motor or perceptual learning is known to influence functional connectivity between brain regions and induce short-term changes in the intrinsic functional networks revealed as correlations in slow blood-oxygen-level dependent (BOLD) signal fluctuations. However, no cause-and-effect relationship has been elucidated between a specific change in connectivity and a long-term change in global networ...

متن کامل

Evaluation of Model-Based Methods in Estimating Dynamic Functional Connectivity of Brain Regions

Today, neuroscientists are interested in discovering human brain functions through brain networks. In this regard, the evaluation of dynamic changes in functional connectivity of the brain regions by using functional magnetic resonance imaging data has attracted their attention. In this paper, we focus on two model-based approaches, called the exponential weighted moving average model and the d...

متن کامل

Connectivity reveals relationship of brain areas for reward-guided learning and decision making in human and monkey frontal cortex.

Reward-guided decision-making depends on a network of brain regions. Among these are the orbitofrontal and the anterior cingulate cortex. However, it is difficult to ascertain if these areas constitute anatomical and functional unities, and how these areas correspond between monkeys and humans. To address these questions we looked at connectivity profiles of these areas using resting-state func...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cerebral cortex

دوره 22 7  شماره 

صفحات  -

تاریخ انتشار 2012